Outline

1. Introduction
2. The procedure
3. WaCky corpora
4. Conclusion
Corpora: what and why

- Collections of natural text stored on computer
- Useful for:
 - NLP (e.g., speech recognition, text categorization, question answering, machine translation...)
 - lexicography, grammar writing, language teaching
 - theoretical linguistics?
Corpora: what and why

- Collections of natural text stored on computer
- Useful for:
 - NLP (e.g., speech recognition, text categorization, question answering, machine translation...)
 - lexicography, grammar writing, language teaching
 - theoretical linguistics?
- Typology and size:
 - “Balanced”/representative/reference corpora: BNC, 100M tokens
 - Mono-source: Gigaword, 1B tokens (newswire)
Minimum requirements for a modern corpus

- POS-tagging and lemmatization
- Indexing for fast, sophisticated queries
Minimum requirements for a modern corpus

- POS-tagging and lemmatization
- Indexing for fast, sophisticated queries
- Also desirable:
 - Parsing
 - Categorization of documents
 - ...
even times less likely to cause irritation. For extra protection motor cells, whose axons cause the muscles which withdraw the gingiva the spirochaete which caused syphilis had been identified and illery close at hand... causing rattling of windows and shaking " and walking aerobically causes the lungs to take in more air with any one of which is to cause a successful jump, is specified intensive agriculture that caused the rhinoceros, like the elephant tress Sinister. It would cause a scandal. Come now, I've obliged government revenue will cause a surge of new bill issues. Lampedom Ljubljana airport, causing the deaths of two Austrian jour system the vibrations can cause a segment to jump into a hole by s. Cholera toxin did not cause nausea or vomiting. Stool volu entifying what it is that causes the reduction in utility i.e. in ere gas tissue interfaces cause susceptibility artefacts which ma rse clip over the mid CBD causing a total stop (Fig 1). An att in the exchange rate will cause a fall in imports and a rise in lder. Their absence will cause a major reshuffle of the side by rankenstein’s family and caused the deterioration of Victor’s h fore the day was out, it caused a great deal of laughter. When
An example (cont.)

```plaintext
count by lemma on matchend;

620  problem
453  damage
259  death
232  harm
174  injury
171  trouble
140  concern
140  difficulty
122  change
110  loss
```
Why the corpora we have are not enough

- Not many corpora available
Why the corpora we have are not enough

- Not many corpora available
- Zipf/data sparseness
The Web is a corpus!

- The Web is a huge database of documents, mostly text.
The Web is a huge database of documents, mostly text.
Pretty much all written textual typologies and languages are attested on Web, often in huge quantities...
The Web is a huge database of documents, mostly text.

Pretty much all written textual typologies and languages are attested on Web, often in huge quantities...

and there are interesting, new forms of computer-mediated communication somewhere between written and oral language.
The WaCky approach

- **Web as Corpus kool yinitiative**
- http://wacky.sslmit.unibo.it (WaCky wiki, mailing list)
- http://sslmitdev-online.sslmit.unibo.it/wac/post_processing.php
- Collaborators outside SSLMIT: Serge Sharoff, Stefan Evert, Adam Kilgarriff, Massimiliano Ciaramita...
The WaCky approach

- **Web as Corpus kool yinitiative**
- http://wacky.sslmit.unibo.it (WaCky wiki, mailing list)
- http://sslmitdev-online.sslmit.unibo.it/wac/post_processing.php
- Collaborators outside SSLMIT: Serge Sharoff, Stefan Evert, Adam Kilgarriff, Massimiliano Ciaramita. . .
- Something simple, but concrete!
The WaCky approach

- **Web as Corpus kool yinitiative**
- http://wacky.sslmit.unibo.it (WaCky wiki, mailing list)
- http://sslmitdev-online.sslmit.unibo.it/wac/post_processing.php
- Collaborators outside SSLMIT: Serge Sharoff, Stefan Evert, Adam Kilgarriff, Massimiliano Ciaramita...
- Something simple, but concrete!
- Emphasis on collaboration, using existing open tools, make developed tools publicly available.
The WaCky approach (cont.)

Current status:
- Large corpora built for German, Italian
- Ongoing work on English, Japanese, Russian, Chinese
Basic steps

- Select “seed” urls.
- Crawl.
- Post-processing.
- Linguistic annotation.
- Indexing.
Selecting seed urls

- Query Google search engine (via API) for random word combinations, and use urls found in this way as seeds.
- How random are the urls collected in this way? Work with Massimiliano Ciaramita to be presented at EACL 2006 suggests: BNC-like random.
Crawling with Heritrix

- http://crawler.archive.org/
- Free/open Java crawler of Internet Archive
Crawling with Heritrix

- Free/open Java crawler of Internet Archive
- Supported by active community...
Crawling with Heritrix

- Free/open Java crawler of Internet Archive
- Supported by active community...
- that includes linguists and machine learning experts
Important in a good crawler

- Honoring robots.txt, politeness
Important in a good crawler

- Honoring robots.txt, politeness
- Robust “Frontier”
Important in a good crawler

- Honoring robots.txt, politeness
- Robust “Frontier”
- Avoid spider traps
Important in a good crawler

- Honoring robots.txt, politeness
- Robust “Frontier”
- Avoid spider traps
- Control over crawl scope, customizable
Important in a good crawler

- Honoring robots.txt, politeness
- Robust “Frontier”
- Avoid spider traps
- Control over crawl scope, customizable
- Intelligent management of downloaded text
Code removal and boilerplate stripping

- Removing HTML and javascript is not enough.
Code removal and boilerplate stripping

- Removing HTML and javascript is not enough.
- “Boilerplate”: links, navigational information, advertisement, etc.
Cleaning with a standard HTML formatter

Blackmore’s Night Latest News
Ritchie Blackmore’s Bio
Blackmore’s Night Band Bios
Blackmore’s Night Tour Info
Blackmore’s Night Merchandise
Blackmore’s Night Photo Gallery
Blackmore’s Night Audio Clips

... Register for Blackmores Night Email Updates!
Just enter your email address in the box below and click the 'Sign up' button!

RITCHIE BLACKMORE A MUSICAL HISTORY...
1967 - RITCHIE BLACKMORE - who has previously played with such bands as the Outlaws, Screaming Lord Sutch, and Neil Christian & The Crusaders - is invited by ex-Artwoods/The Flowerpot Men keyboardist Jon Lord (who was invited by The Searchers ex-drummer, Chris Curtis) to form a new band. Other musician’s would be auditioned from a Melody Maker ad in Deeves Hall in Hertfordshire.
1968- In February, the group would form as Roundabout, consisting of...
The HTML density heuristic

- http://www.smi.ucd.ie/hyppia/
- We provide more efficient re-implementation
The HTML density heuristic

- [] http://www.smi.ucd.ie/hyppia/
- [] We provide more efficient re-implementation
- [] Basic observation: Content-rich section of page tends to occur in low-HTML-density area
The HTML density heuristic

- http://www.smi.ucd.ie/hyppia/
- We provide more efficient re-implementation
- Basic observation: Content-rich section of page tends to occur in low-HTML-density area
- Look for stretch that maximizes the quantity: $N(TOKEN) - N(TAG)$
Why it (mostly) works

TAG TAG TOKEN TOKEN TAG TAG TAG
TOKEN TAG TAG
TOKEN TAG TAG
TAG TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN
TOKEN TAG TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN
TAG TAG
TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN
TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN TOKEN
TAG TAG TAG TAG TAG
TAG TOKEN TAG TAG TOKEN
TAG TOKEN TAG TOKEN
- RITCHIE BLACKMORE – who has previously played with such bands as the Outlaws, Screaming Lord Sutch, and Neil Christian & The Crusaders – is invited by ex-Artwoods/The Flowerpot Men keybordist Jon Lord (who was invited by The Searchers ex-drummer, Chris Curtis) to form a new band. Other musician’s would be auditioned from a Melody Maker ad in Deeves Hall in Hertfordshire. 1968 – In February, the group would form as Roundabout, consisting of the three (with Chris Curtis on vocals) along with Dave Curtis on bass and Bobby Woodman on drums. After only a month of uncompromising rehearsals, BLACKMORE and LORD would be the only two remaining, bringing in vocalist Rod Evans (formally of the groups M15 and Maze), bassist Nick Simper (ex-Johnny Kidd & the Pirates) and drummer Ian Paice. In April, the band would change its name to DEEP PURPLE, and forego the name Concrete God. Using Vanilla Fudge as its model, the group records an album and is signed to EMI in the United Kingdom and Tetragrammation (Bill Cosby’s label) in the United States. A few months later, the band performs its first major UK performance at the Sunbury Festival. In September, the band would release the first single from the album, "Hush", which reaches #4 on the US charts. The album, itself, Shades of Deep Purple, would reach the Top 25. In December, the band would release their rendition of Neil Diamond’s "Kentucky Woman" a single which would also experience considerable chart success. 1969 – Early in the year, the band would release The Book to Taliesyn which would feature a revival of Ike and Tina Turner’s "River Deep, Mountain High." In July, the band would release their self-titled album, Deep Purple. Shortly thereafter, their record label would go under and Rod Evans and Nick Simper would both leave the band. They would be replaced by singer Ian Gillan and bassist Roger Glover
HTML density heuristic: pros and cons

- **Pros:**
 - Does not require global statistics
 - Works across different page formats
HTML density heuristic: pros and cons

- **Pros:**
 - Does not require global statistics
 - Works across different page formats

- **Cons:**
 - Not able to identify discontinuous content-rich chunks
 - Requires tokenization: problem with East Asian languages
Zipfian filtering

- If at least 25% of the words in a document are not from short list of function words in target language, then document
 - is not in target language or
 - does not contain a high proportion of connected text
Near-duplicate detection

- Perfect duplicates trivial (compare fingerprints)
Near-duplicate detection

- Perfect duplicates trivial (compare fingerprints)
- Near-duplicates very common online (dynamically generated pages with slightly different contents, same document on different sites, etc.)
Near-duplicate detection

- Perfect duplicates trivial (compare fingerprints)
- Near-duplicates very common online (dynamically generated pages with slightly different contents, same document on different sites, etc.)
- One could compare all possible sequences of length n (n-grams), and measure overlap between two documents:

 this is a short toy document
 and this is a short toy document too
Near-duplicate detection

- Perfect duplicates trivial (compare fingerprints)
- Near-duplicates very common online (dynamically generated pages with slightly different contents, same document on different sites, etc.)
- One could compare all possible sequences of length n (n-grams), and measure overlap between two documents:

 \[
 \text{this is a short toy document} \\
 \text{and this is a short toy document too}
 \]

- Safe, but not efficient
The Shingling Algorithm

The Shingling Algorithm

Steps:
- For each document, remove function words.
- Randomly select fixed number of n-grams from document.
- Look for pairs of documents that share at least X of the randomly sampled n-grams.
The Shingling Algorithm

- Steps:
 - For each document, remove function words.
 - Randomly select fixed number of n-grams from document.
 - Look for pairs of documents that share at least X of the randomly sampled n-grams.

- Unbiased estimate of overlap between pages.
The Shingling Algorithm

- Steps:
 - For each document, remove function words.
 - Randomly select fixed number of n-grams from document.
 - Look for pairs of documents that share at least X of the randomly sampled n-grams.

- Unbiased estimate of overlap between pages.

- Our parameters: 25 5-grams; maximum acceptable overlap: 1/25
In principle, nothing special about Web data, but targeted training data needed (and serious tokenization problems)
In principle, nothing special about Web data, but targeted training data needed (and serious tokenization problems)

We used standard TreeTagger for German, re-trained TreeTagger with our own morphological resources for Italian
In principle, nothing special about Web data, but targeted training data needed (and serious tokenization problems)

We used standard TreeTagger for German, re-trained TreeTagger with our own morphological resources for Italian

A few problems:
- finanziert/VVPP ganz/ADJD erheblich/ADJD
- mit./NE das/ART
- das/ART buch/VVIMP
Once we have a corpus, we would like to use it,
Once we have a corpus, we would like to use it, and share it via Web interface allowing linguists to do serious research.
Once we have a corpus, we would like to use it, and share it via Web interface allowing linguists to do serious research. Need for flexible annotation-aware queries rules out:
Indexing and querying

- Once we have a corpus, we would like to use it, and share it via Web interface allowing linguists to do serious research.
- Need for flexible annotation-aware queries rules out:
 - Standard relational db based solution (not flexible)
Once we have a corpus, we would like to use it, and share it via Web interface allowing linguists to do serious research.

Need for flexible annotation-aware queries rules out:
- Standard relational db based solution (not flexible)
- Lucene/Nutch full text search engine (not annotation-aware)
Once we have a corpus, we would like to use it, and share it via Web interface allowing linguists to do serious research.

Need for flexible annotation-aware queries rules out:
- Standard relational db based solution (not flexible)
- Lucene/Nutch full text search engine (not annotation-aware)

Current experiments with specialized software: IMS Corpus WorkBench, Word SketchEngine
Indexing and querying

- Once we have a corpus, we would like to use it, and share it via Web interface allowing linguists to do serious research
- Need for flexible annotation-aware queries rules out:
 - Standard relational db based solution (not flexible)
 - Lucene/Nutch full text search engine (not annotation-aware)
- Current experiments with specialized software: IMS Corpus WorkBench, Word SketchEngine
- At the moment, neither solution satisfactory
Outline

1. Introduction
2. The procedure
3. WaCky corpora
4. Conclusion
deWaC corpus

- Seeded from random Google queries for SDZ and basic vocabulary pairs.
- Crawl limited to .at/.de domains, with URL-based regular expression to focus on HTML.
- On dedicated server running RH Fedora Core 3 with 4 GB RAM, Dual Xeon 4.3 GHz CPUs, about 2.5 TB hard disk space
- crawl took about 10 days, post-processing 1 week, post-processing 5 days, near-duplicate detection 4 days, annotation about 3 days (Italian processing slightly faster)
- Crawl output: 85GB compressed data
- Cleaned corpus: 1.65B tokens, 1.76M documents, 30GB of data uncompressed and with annotation
Comparison with APA corpus
Using Log-Likelihood Ratio score

<table>
<thead>
<tr>
<th>deWaC</th>
<th>APA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ich</td>
<td>APA</td>
</tr>
<tr>
<td>hier</td>
<td>NATO</td>
</tr>
<tr>
<td>dass</td>
<td>Schluß</td>
</tr>
<tr>
<td>wir</td>
<td>EU</td>
</tr>
<tr>
<td>und</td>
<td>Prozent</td>
</tr>
<tr>
<td>man</td>
<td>Forts</td>
</tr>
<tr>
<td>sie</td>
<td>Mill</td>
</tr>
<tr>
<td>nicht</td>
<td>AFP</td>
</tr>
<tr>
<td>ist</td>
<td>MRD</td>
</tr>
<tr>
<td>das</td>
<td>Dollar</td>
</tr>
<tr>
<td>oder</td>
<td>Wien</td>
</tr>
<tr>
<td>sind</td>
<td>Reuters</td>
</tr>
<tr>
<td>kann</td>
<td>Kosovo</td>
</tr>
<tr>
<td>so</td>
<td>Dienstag</td>
</tr>
<tr>
<td>du</td>
<td>DPA</td>
</tr>
<tr>
<td>mir</td>
<td>Mittwoch</td>
</tr>
<tr>
<td>wenn</td>
<td>US</td>
</tr>
<tr>
<td>ein</td>
<td>Donnerstag</td>
</tr>
<tr>
<td>was</td>
<td>am</td>
</tr>
<tr>
<td>da</td>
<td>sei</td>
</tr>
</tbody>
</table>
An application: potentially separable prefixes

Work done with Matiasek, Neubarth, Trost

- Identifying behaviour of potentially separable prefixes based on unambiguous contexts
- Pilot study of set of 250 durch- verbs:
 - disambiguated in DUDEN: 198
 - disambiguated in APA: 95 (only 1 not in DUDEN)
 - disambiguated in deWaC: 241
itWaC

- Crawl performed by Eros Zanchetta
- Seeds from Google queries for terms extracted from *la Repubblica* corpus and basic vocabulary list
- Procedure similar to deWaC
- 81GB gzipped archives from crawl
- Cleaned corpus: 1.9B tokens, 1.87M documents, 31GB of data including annotation
Comparison with *la Repubblica*
Log-Likelihood Ratio, function words only

<table>
<thead>
<tr>
<th>itWaC</th>
<th>Repubblica</th>
</tr>
</thead>
<tbody>
<tr>
<td>ed</td>
<td>ha</td>
</tr>
<tr>
<td>perché</td>
<td>ieri</td>
</tr>
<tr>
<td>delle</td>
<td>ma</td>
</tr>
<tr>
<td>tale</td>
<td>un</td>
</tr>
<tr>
<td>ti</td>
<td>aveva</td>
</tr>
<tr>
<td>cui</td>
<td>hanno</td>
</tr>
<tr>
<td>presso</td>
<td>èra</td>
</tr>
<tr>
<td>ciao</td>
<td>che</td>
</tr>
<tr>
<td>tu</td>
<td>più</td>
</tr>
<tr>
<td>te</td>
<td>perché</td>
</tr>
<tr>
<td></td>
<td>adesso</td>
</tr>
<tr>
<td>hai</td>
<td>una</td>
</tr>
<tr>
<td>tali</td>
<td>due</td>
</tr>
<tr>
<td>tuo</td>
<td>il</td>
</tr>
<tr>
<td>vi</td>
<td>suo</td>
</tr>
<tr>
<td>nn</td>
<td>dopo</td>
</tr>
<tr>
<td>nonché</td>
<td>non</td>
</tr>
<tr>
<td>di</td>
<td>fa</td>
</tr>
<tr>
<td>tua</td>
<td>lui</td>
</tr>
<tr>
<td>possono</td>
<td>si</td>
</tr>
<tr>
<td>ovvero</td>
<td></td>
</tr>
</tbody>
</table>
An application: *ri-*

ri-repelling verbs in *la Repubblica*:

- arrivare
- sembrare
- restare
- continuare
- prevedere
- rimanere
- capire
- rispondere
- bisognare
- raggiungere
An application: *ri-*

<table>
<thead>
<tr>
<th>itWaC ri-frequencies of same verbs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>rispondere</td>
<td>18</td>
</tr>
<tr>
<td>capire</td>
<td>10</td>
</tr>
<tr>
<td>raggiungere</td>
<td>4</td>
</tr>
<tr>
<td>arrivare</td>
<td>4</td>
</tr>
<tr>
<td>prevedere</td>
<td>3</td>
</tr>
<tr>
<td>continuare</td>
<td>2</td>
</tr>
<tr>
<td>rimanere</td>
<td>1</td>
</tr>
<tr>
<td>sembrare</td>
<td>0</td>
</tr>
<tr>
<td>restare</td>
<td>0</td>
</tr>
<tr>
<td>bisognare</td>
<td>0</td>
</tr>
</tbody>
</table>
Building a large corpus by crawling is quite straightforward...
Building a large corpus by crawling is quite straightforward... but devil is in the (terabytes of) details.
Some open issues

- Indexing/query system/Web interface for very large corpora
Some open issues

- Indexing/query system/Web interface for very large corpora
- Scaling up
Some open issues

- Indexing/query system/Web interface for very large corpora
- Scaling up
- Categorization
Some open issues

- Indexing/query system/Web interface for very large corpora
- Scaling up
- Categorization
- Universal post-processing (encoding hell! East Asian languages!)
Some open issues

- Indexing/query system/Web interface for very large corpora
- Scaling up
- Categorization
- Universal post-processing (encoding hell! East Asian languages!)
- Tuning linguistic tools to Web data (tokenization!)
Please join us!!!

- Hot topic, active community, plenty of unsolved problems, computational expertise needed!
- WaCky corpora available to whoever is interested in using them.
- EACL06 WaC Workshop in Trento!